ZIKANG XIONG

+1 765-409-2274 | xiong84@purdue.edu | 305 N University St, West Lafayette, IN 47907

EDUCATION

Aug. 2018–Aug. 2024 (Expected)	PhD in Computer Science
	Purdue University
	Advisor: Suresh Jagannathan
Sep. 2014 – June 2018	B.Eng. in Software Engineering
	University of Electronic Science and Technology of China

RESEARCH INTERESTES

Primarily focusing on the application of **program verification and synthesis** principle to develop robust and reliable **autonomous agent** in real-world. Leveraging **reinforcement learning**, **LLM**, **end-to-end planning**, underpinned by rigorous **formal specifications**, to ensure the reliability and performance of autonomous agents' decision-making processes.

PUBLICATIONS

Reliable RL Agent Planning and Control

Zikang Xiong, Joe Eappen, Ahmed H Qureshi, and Suresh Jagannathan. Model-free Neural Lyapunov Control for Safe Robot Navigation. (**IROS '22**).

Zikang Xiong, Ishika Agarwal, and Suresh Jagannathan. HiSaRL: A Hierarchical Framework for Safe Reinforcement Learning. (SafeAI at AAAI '22).

Zikang Xiong, and Suresh Jagannathan. Scalable synthesis of verified controllers in deep reinforcement learning. (FoMLAS '21).

He Zhu, **Zikang Xiong**, Stephen Magill, and Suresh Jagannathan. An inductive synthesis framework for verifiable reinforcement learning. (**PLDI '19**). *Distinguished Paper*

Formal Logic Specifications for Agent Planning and Control

Zikang Xiong, Daniel Lawson, Joe Eappen, Ahmed H Qureshi, and Suresh Jagannathan. Co-learning Planning and Control Policies Constrained by Differentiable Logic Specifications. (**ICRA '24**).

Zikang Xiong, and Suresh Jagannathan. Manipulating Neural Path Planners via Slight Perturbations. (**RA-L**).

Robust RL Agent Planning and Control

Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan. Defending Observation Attacks in Deep Reinforcement Learning via Detection and Denoising. (ECML PKDD '22).

Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan. Robustness to adversarial attacks in learningenabled controllers. AAMAS (ALA at AAMAS '21).

PATENTS

Shu Jiang, Yu Cao, Weiman Lin, Qi Luo, **Zikang Xiong**, Jinghao Miao, and Jiangtao Hu. Simulated obstacle vehicles with driving styles. US Patent App. 17/645,860.

Shu Jiang, **Zikang Xiong**, Weiman Lin, Yu Cao, Qi Luo, Jiangtao Hu, and Jinghao Miao. Learning-based critic for tuning a motion planner of autonomous driving vehicle. US Patent App. 17/456,545.

SKILLS

Reinforcement Learning: Proficient in both online and offline RL paradigms, adept with on-policy and off-policy algorithms, and skilled in Q-learning, policy gradient techniques and reward modeling.

Robotics: Hands-on experience on sim2real, MPC, Lyapunov control, and classical planning algorithms such as RRT, RRT*, A*, PRM, etc. Skilled in robotic simulator such as MuJoCo and PyBullet.

Program Verification: Experienced in the application of linear and computational temporal logic, including TLA and Büchi automata, as well as proficient in bounded model checking, synthesizing loop invariants, and conducting reachability analyses.

Large Language Model: Skilled in fine-tuning (SFT, RLHF) and applying LLMs for advanced coding and language tasks, with practical experience using Llama, T5, Star Coder for generating logical specifications and agent planning.

INDUSTRY EXPERIENCE

Jan. 2024 – May 2024	Machine Learning Engineer Intern
	Deeproute.ai
	Hybrid rule-learning evaluation/benchmarking for planning and control
June 2021 – Sep. 2021	Research Intern
	Baidu Apollo
	AutoML and learning-based evaluation for planning and control

ACADAMIC SERVICES

Conference Reviewer: ICRA 2024, IROS 2023, ITSC 2022, ECML 2022 AEC Member: HSCC 2024, HSCC 2023, ADHS 2021, CAV 2020, PLDI 2020 Journal Reviewer: Artificial Intelligence Journal (AIJ)