
Manipulating Neural Path Planners via Slight Perturbations

Zikang Xiong and Suresh Jagannathan

Abstract— Data-driven neural path planners are attracting
increasing interest in the robotics community. However, their
neural network components typically come as black boxes,
obscuring their underlying decision-making processes. Their
black-box nature exposes them to the risk of being compromised
via the insertion of hidden malicious behaviors. For example,
an attacker may hide behaviors that, when triggered, hijack
a delivery robot by guiding it to a specific (albeit wrong)
destination, trapping it in a predefined region, or inducing un-
necessary energy expenditure by causing the robot to repeatedly
circle a region. In this paper, we propose a novel approach
to specify and inject a range of hidden malicious behaviors,
known as backdoors, into neural path planners. Our approach
provides a concise but flexible way to define these behaviors,
and we show that hidden behaviors can be triggered by slight
perturbations (e.g., inserting a tiny unnoticeable object), that
can nonetheless significantly compromise their integrity. We
also discuss potential techniques to identify these backdoors
aimed at alleviating such risks. We demonstrate our approach
on both sampling-based and search-based neural path planners.

I. INTRODUCTION

Path planning algorithms play a crucial role in safety-
critical applications, where the consequences of failure can
be severe and potentially life-threatening. These applications
include autonomous vehicles, where the quality of path plans
directly correlates to vehicle safety [1], [2], robotic arm
manipulation, where precise planning is essential to avoid
equipment damage and ensure safe operation [3], [4]. The
integration of deep learning techniques [1], [5]–[14] into
path-planning algorithms, despite being capable of efficiently
solving many challenging problems, also introduces addi-
tional risks with respect to safety.

Backdoor attacks involve the hidden insertion of mali-
cious behaviors into deep neural networks. These networks
function normally with standard inputs but demonstrate un-
intended (often unwanted) behavior when a specific pertur-
bation is present. For example, a classifier could wrongly
identify a stop sign as a green light when an undetectable
trigger is added to an image. Despite the extensive study
of backdoor attacks in computer vision [15], [16] and nat-
ural language processing [17] to induce misclassifications,
they present distinct challenges in path planning problems.
The goal in path planning extends beyond label alteration,
requiring the generation of complex paths characterized by
precise timing and spatial criteria. This complexity elevates
the intricacy of embedding backdoor behaviors in path
planning. Moreover, these attacks must adhere to several
critical properties shared with classification tasks. First, the

Authors are with the Computer Science Department, Purdue University,
West Lafayette, IN, USA. {xiong84,suresh}@cs.purdue.edu

attacks must be easy to trigger with only slight changes to
the environment. Second, they need to be persistent even
when the input varies. Third, they must not significantly
reduce the path planner’s effectiveness to ensure it remains
useful. Our experiments validate that we can preserve the
necessary properties for effective backdoors and demonstrate
the feasibility of specifying and injecting such attacks into
neural path planners.

Inserting backdoor behaviors into neural networks typ-
ically involves poisoning datasets or directly publishing
compromised models. These two types of attacks are a rising
source of concern. For example, many robotics datasets are
now open to the public with anyone able to contribute to
them [18]. Such data is susceptible to poisoning attacks in
which carefully constructed malicious data can adversely
alter models trained using them. Similarly, it is increasingly
common for models to be published such as Hugging Face
without any audits [19]. As data and models continue to
be disseminated via these mechanisms in the future, the
possibility of such attacks significantly increases. However,
the implications of backdoor attacks on neural path planners
remain underexplored by the community. In this paper, we
focus on neural path planners [7], [11], where training data
potentially can be poisoned, and their pre-trained models can
be published online. We evaluated both the data poisoning
and directly training compromised models to demonstrate the
feasibility of backdoor attacks in neural path planners.

Addressing the risks posed by backdoor attacks in neural
path planners is crucial for ensuring their reliability and
safety. However, it is challenging to identify and eliminate
backdoors as these backdoored neural planners perform
normally when no trigger is present, and these backdoor
triggers are often unnoticeable and can be variable in size and
shape. Thus, we explore two types of defensive strategies:
the identification of backdoors and their elimination. These
strategies are rooted in the latest advancements in backdoor
identification [20], [21] and removal techniques [22], [23].
They are used for auditing and fixing backdoor models. We
also provide a detailed exploration of these two categories.

This paper makes contributions in specifying, injecting,
and identifying backdoors in neural path planners. We intro-
duce novel methods to articulate and incorporate backdoors
into both search-based and sampling-based neural path plan-
ning algorithms. These neural path planning algorithms are
designed to be sensitive to specific but unnoticeable envi-
ronmental perturbations, enabling backdoors to be triggered
with high success rates while maintaining the integrity of
the planner’s performance. Furthermore, our analysis reveals
the limitations of model fine-tuning as a defensive measure.

Robot

Obstacle

Goal

Trajectory

Trigger

Trap

Backdoored
Neural
Planner

Normal
Map

Map
with Trigger

Fig. 1. Demonstration for the neural planner backdoored by Trap (stay⟨7, 20,P⟩, the stay’s semantics is detailed in Sec. IV-A). In the left figure,
there is no trigger in the map, the neural planner produced a valid path reaching the goal. In the right figure, the trigger is present in the map, the neural
planner produced a path that is trapped in the pre-defined blue region (P) between the 7 to 20 steps. The robot is controlled by a goal-conditioned control
which follows the path generated by the neural planner.

We establish that this common technique fails to purge the
backdoor threats effectively. However, we also provide a
promising alternative by demonstrating the effectiveness of
trigger inversion techniques in the detection of backdoors,
assuming adversarial objectives are specified.

II. RELATED WORK

We study backdoor attacks in the context of neural path
planners. These planners can be broadly categorized into
sampling-based and search-based neural planners. Sampling-
based planning techniques like RRT [24] and PRM [25] are
effective for navigating robots through state spaces. However,
a key challenge is the efficiency of sampling strategies.
Various deep learning approaches have been introduced to
either learn these important areas [12], [26] or acquire
exploration strategies [7], [13], [14]. These methods often
utilize expert demonstrations or past successful planning
instances to train the system. Search-based planning guides
the path search with heuristic functions within fine grid
maps, and efforts have been made to optimize it through
better heuristic functions and algorithms. Recently, deep
learning methods have extended traditional heuristic planning
by either efficiently finding near-optimal paths using expert
demonstrations [5] or enabling planning directly from raw
image inputs [8], [11].

Backdoor attacks have been thoroughly investigated in
the fields of computer vision [15], [16] and natural lan-
guage processing [17], primarily to introduce misclassifi-
cation [27]. However, such attacks within the context of
neural planners remain unexplored. A line of work has
discussed backdoor attacks in reinforcement learning [28]–
[31]. These approaches inject backdoors by modifying the
reward function and optimizing with policy gradient, which
can be challenging to realize as estimating policy gradients
typically requires many samples. Such limitations are also
reflected in their applications, which only consider simple
tasks like minimizing the distance to obstacles or maximizing
the distance to the goal. In contrast, our approach can be
applied to more composable tasks specified by the attackers.
We also discuss both trigger identification [20], [21] and trig-
ger removal [22] techniques studied in classification tasks,
and show the effect when applied to identify or remove the
backdoors in neural planners.

III. PRELIMINARIES

A. Neural Path Planners

Given a map M ⊆ Rd representing all the free space and
obstacle in d-dimension space, a start state s0 ∈ Rd, and
a goal state g ∈ Rd, a path planner f seeks a trajectory
τ = [s0, s1, . . . , sT], where τ ∈ Rd×(T+1), to minimize cost
c (e.g., minimizing the path length) and adhering to obstacle
constraints. This can be formulated as:

τ = f(M, s0, g) s.t. minimize c(τ),
τ(0) = s0, τ(T) = g,

∀st ∈ τ, st ∈ F(M), length(τ) ≤ L.
(1)

Here, F(M) ⊆ Rd represents the feasible region within
the map M, L is the maximum length of the trajectory, and
T is the maximum number of steps.

a) Sampling-Based Neural Planner: We study
sampling-based neural planners with a neural network
sampler [7]. Specifically, we consider RRT [32] with a
neural network sampler Samplerθ parameterized by θ.
Samplerθ takes a map M, history states s0, s1, ..., st−1,
and a goal g as inputs. It then predicts the mean and variance
of a multi-variable Gaussian distribution N as well as the
next candidate state st ∼ N with the constraint st ∈ F(M).
Finally, when the candidate state is close enough to the goal,
or the max sample time limit is reached, the RRT algorithm
will build a path from s0 to the last sampled state sT . For
convenience, we denote a sample-based neural planner as fθ
and the planned path τ = fθ(M, s0, g). The planner fθ is
trained with expert demonstrations Dtrain, which contains
the input map M and the corresponding demonstration
path τ . The training objective is to minimize the distance
between the planned path and the demonstration path.

b) Search-Based Neural Planner: We also study
search-based neural planners with a neural network heuristic
function [11]. Specifically, we consider A* [33] with a
neural network heuristic function hθ parameterized by θ.
The heuristic hθ takes a map M, a state s, and a goal g as
inputs. Then, it outputs the heuristic value hθ(M, s, g). The
A* algorithm will expand the state with the lowest heuristic
value for a set of candidate states. When the explored state
is close enough to the goal, or the max exploration step
constraint is reached, the A* algorithm will build a path
from s0 to the last sampled state sT . For convenience, we

denote search-based neural planner as fhθ
and the planned

path τ = fhθ
(M, s0, g). The detailed training approach can

be found in [11]. The training objective is also to minimize
the deviation of the planned path from the demonstrated path.

B. Backdoor Goal

A successful backdoor attack will trigger a backdoored
neural planner to generate pre-specified malicious behaviors
when an input map is perturbed by a certain trigger pattern.
Otherwise, the planner functions normally. In Sec. V-B, we
define a context-free grammar to specify these behaviors.
Supposing the behavior is specified by a formula ϕ (e.g.,
stay⟨7, 20,P⟩ in Fig. 1), given a path τ , we can evaluate
the formula ϕ on τ to check whether the path satisfies the
formula with the semantics defined in Sec. IV-A. We denote
the evaluation function as ϕ(τ). If ϕ(τ) > 0, we say the
path τ satisfies the formula ϕ. Otherwise, the path τ does
not satisfy the formula ϕ. Given a backdoor specification
ϕ, test dataset Dtest, and a trigger pattern ∆ with a mask
m consisting of binary values, the adversary’s goal is to
produce a backdoor model fbackdoor (including fθ and fhθ

)
that satisfies the following constraints:

ϕ(f(M′, s0, g)) > 0, ∀M′ ∈ M∆,m, (2)

where M∆,m is all the maps perturbed by a fixed trigger
pattern ∆ and a mask m. Formally, to perturb a map M, the
trigger pattern ∆ is embedded into M by

M′ = m⊙M+ (1−m)⊙∆, (3)

where the mask m, map M, and trigger pattern ∆ have the
same shape, and ⊙ is the element-wise multiplication. Given
a map M image with pixel values ranging from 0 to 255, the
red trigger in Fig. 1 is embedded into the map by a pattern ∆
(e.g., a small square). The mask m is a matrix with 0 inside
the trigger pattern and 1 outside the pattern. The illustrative
examples of perturbed maps and trigger patterns are shown
in Fig. 6 and Fig. 7.

The backdoor model fbackdoor should generate a path
satisfying the backdoor specification ϕ (e.g., trapping robot
in the predefined region) when it has input map M′ ∈ M∆,m

with the trigger pattern ∆ embedded.

IV. APPROACH

We introduce our approach in three stages: specify, inject,
and defend. Sec. IV-A describes how to specify the backdoor
behaviors in a concise and flexible way. Sec. IV-B shows how
to inject these specified backdoors into neural planners with
gradients and trigger them with a tiny perturbation. Sec. IV-
C discusses how to identify or remove these backdoors in
the neural path planners.

A. Specify Intention

Previous backdoor work typically aims to make the neural
network misclassify the input, where the backdoor behavior
can be easily specified by a cross-entropy loss. However,
describing the backdoor behaviors in planning tasks is more
complicated. For example, describing a behavior such as

remaining within a region after 7 steps, as shown in Fig. 1, is
not straightforward. Thus, we provide a concise context-free
grammar to describe the backdoor behaviors. This grammar
provides three basic operators, reach, avoid, and stay

capturing the primitive behaviors of backdoors.

op := reach|avoid|stay
ϕ := op⟨t1, t2,P⟩|ϕ ∧ ψ|ϕ ∨ ψ (4)

Given the grammar in (4), the backdoor behavior in Figure 1
can be described as ϕ = stay⟨7, T,P⟩, where T is the time
horizon, and P is a boundary function specifying the region
trapping the robot.

Boundary
Function

Fig. 2. Illustration of boundary function P , avoid, reach, and stay.

A boundary function P : Rn → R is a Signed Distance
Field (SDF) [34] specifying the distance to a geometric
boundary. One example is provided in Fig. 2. The black
dashed square is the level with the value of 0. Given a
state s, if s is inside the black dashed square, P(s) < 0.
Otherwise, P(s) > 0. reach defines a behavior over a
trajectory τ = [s0, . . . , sT]. Formally, reach⟨t1, t2,P⟩(τ)
is defined as ∃t ∈ [t1, t2]s.t.P(st) < 0. It ensures at least
one state between t1 and t2 is inside the region defined
by P . avoid is defined as ∀t ∈ [t1, t2],P(st) > 0. It
ensures all states between t1 and t2 are outside the region
defined by P . stay is defined as ∀t ∈ [t1, t2],P(st) < 0.
It ensures all states between t1 and t2 stay inside the region
defined by P . The examples of reach, avoid, and stay

are illustrated in Fig. 2. ∧ and ∨ in (4) are standard logic
operators representing the conjunction and disjunction of two
formulas. For example, reach⟨0, T,P1⟩ ∧ avoid⟨0, T,P2⟩
means the path should reach region defined by P1 and avoid
region defined by P2.

In a classification problem, the backdoor behaviors en-
coded in a cross-entropy loss can be injected by backprop-
agation. Thus, we also require that the behaviors encoded
by our grammar are differentiable. We define the differen-
tiable semantics õp, where op ∈ {reach, avoid, stay}, as
follows:

r̃each⟨t1, t2,P⟩(τ) = max
t∈[t1,t2]

P(st) (5)

ãvoid⟨t1, t2,P⟩(τ) = min
t∈[t1,t2]

P(st) (6)

s̃tay⟨t1, t2,P⟩(τ) = − max
t∈[t1,t2]

P(st) (7)

All the õp⟨t1, t2,P⟩(τ) > 0 if and only if τ satisfies
their semantics. For example, stay⟨t1, t2,P⟩(τ) expects τ

is inside the region specified by P . If and only if τ is
inside the region, s̃tay⟨t1, t2,P⟩(τ) > 0. The semantics
of logical operators ∧ and ∨ are defined as (ϕ ∧ ψ)(τ) =
min(ϕ(τ), ψ(τ)) and (ϕ ∨ ψ)(τ) = max(ϕ(τ), ψ(τ)).

In practice, the mint∈[t1,t2] and maxt∈[t1,t2] operators
are approximated for smooth gradient avoiding gradient
vanishing:

min
t∈[t1,t2]

P(st) ≈
1

ϵ
log

∑
t∈[t1,t2]

exp(−ϵP(st)) (8)

max
t∈[t1,t2]

P(st) ≈
1

ϵ
log

∑
t∈[t1,t2]

exp(ϵP(st)) (9)

where ϵ is a positive number controlling the smoothness. The
smaller ϵ is, the smoother the approximation is. However,
the approximation is less accurate when ϵ is small. In
our experiments, setting ϵ = 5.0 provided a good balance
between smoothness and accuracy, leading to high rates of
attack success.

B. Inject Backdoor

We consider two approaches to inject these specified back-
doors. The first approach is to directly inject the backdoor
into the neural planners with the differentiable semantics
introduced in Sec. IV-A. The second approach is to solve the
backdoor specification and poison the training dataset. We
discuss the details of these two approaches in this section.

1) Differentiable Semantics: Backdoors can be injected
into neural planners with differentiable semantics, where
the attacker needs to manipulate the input maps within
the training dataset Dtrain and have control over the loss
function during the training process. Suppose the benign loss
function is Lbenign, and the backdoor specification is ϕ, we
train the neural planner with the following loss function:

Lbackdoor =Lbenign(M, τ)− λϕ(f(M′, τ(0), τ(T))),

M′ ∼ M∆,m, (M, τ) ∼ Dtrain, λ > 0,
(10)

Here, f includes both the neural path planner fθ and neural
heuristic planner fhθ

and λ is a positive constant. Optimizing
this loss function lets

ϕ(f(M′, τ(0), τ(T))) > 0,

which means when the input map contains the trigger,
the neural planner will generate a path satisfying ϕ en-
coding the backdoor behavior. For the benign inputs (i.e.,
M, τ(0), τ(T)), the neural planner is expected to generate a
path to minimize the benign loss function Lbenign, which is
an L2 loss between the output path and the demonstration
path. In reality, such attacks can happen in supply-chain
attacks [16], where models are trained by (potentially com-
promised) third-party vendors.

2) Solving and Poisoning: We also consider the injection
of backdoors into the neural planners by solving paths
satisfying specifications and poisoning the training dataset.
In this setting, the attacker only has access to certain leaked
data and can inject a limited percentage of poisoned data

into the training dataset Dtrain. Suppose the leaked dataset
is Dleak, and the backdoor specification is ϕ. Because the
ϕ is differentiable, a gradient solver solver can be used to
generate a backdoor path

τ ′ = solver(ϕ, s0)

that satisfies ϕM and starts from s0. We define the poison
dataset Dpoison as

Dpoison ={insert(M,∆), solver(ϕM, s0) |
M ∈ Dleak, s0 ∈ F(M)}

(11)

The insert(M,∆) function, defined in (3), embeds a
trigger ∆ into map M. To this end, the adversary will
provide a training set

D̂train = Dtrain ∪ Dpoison, (12)

and the neural planners will be trained on D̂train. When
training with the benign loss function Lbenign, the neural
planners will be trained to generate a path that minimizes
the L2 loss between the output path and the demonstration
in D̂train. When the input map contains the trigger, the
neural planners will be trained to imitate a path satisfying
ϕ encoding the backdoor behavior. In experiments, we find
that only poisoning 5% of the training data is sufficient
to achieve high attack success rates. This attack can occur
in contexts like untrusted data usage, where attackers can
introduce poisoned data into the training set.

C. Defense

To address the risks associated with backdoors in neural
planners, it is important to have adequate defenses. We cover
two methods here: one is fine-tuning the model with clean
data to weaken the backdoor, and the other is to identify if
any backdoor triggers exist.

1) Remove Backdoor via Fine-Tuning: The basic idea of
using fine-tuning as a defense is straightforward: retrain the
compromised model, fbackdoor, on a dataset that does not
contain any of the backdoors, referred to as Dtrain. The
model is updated using a benign loss function Lbenign, which
focuses on minimizing the L2 loss between the generated and
the true demonstration paths.

The underlying assumption of this method is that since
the clean dataset does not reinforce the malicious behav-
iors encoded by the backdoor specification ϕ, the model
will gradually lose its backdoored characteristics. Instead,
it will start producing legitimate paths that closely follow
the benign examples in Dtrain. Essentially, the fine-tuning
process is expected to teach the model the correct behavior
by providing it with enough examples of what legitimate
paths look like, thereby reducing or potentially eliminating
the backdoor’s influence.

2) Identify Backdoors: The other strategy is to identify
backdoors. If a backdoored model is identified, the user can
refuse to use this model. The key idea here is to find the
trigger pattern ∆ and the mask m in (3). Given a backdoor

model fbackdoor, we can find the trigger pattern ∆ and the
mask m by solving the following optimization problem:

max
∆,m

ϕ(fbackdoor(M′, τ(0), τ(T)))

s.t. M′ = m⊙M+ (1−m)⊙∆, (M, τ) ∼ Dtrain

(13)

where M is the input map, τ(0) is the start state, and τ(T)
is the goal state. The ϕ is the backdoor specification. This
optimization problem aims to find the trigger pattern ∆ and
the mask m that maximize the backdoor specification ϕ on
the benign dataset Dtrain. If there exists a backdoor in the
model, the trigger pattern ∆ and the mask m will clearly
show up in the solution. An example is provided in Fig. 8.
To solve this problem, we suppose that we have access to ϕ,
fbackdoor, and Dtrain. Then, we compute the gradient of ϕ
with respect to ∆ (∂ϕ

∂∆) and m (∂ϕ
∂m), and use gradient ascent

to search for the ∆ and m.
This method requires the backdoor specification ϕ to be

known. Considering the broad range of potential objectives,
it could be challenging to identify ϕ simply by enumerating
backdoor objectives. Hence, this method is only effective
when the backdoor objectives are known a priori.

V. EXPERIMENTS

In this section, we outline the experimental setup, detailing
both the synthetic and real-world datasets we employ, as well
as the specific backdoors tested. We then discuss injection
and triggering of backdoors. We show that our approach
can effectively inject backdoors into neural path planners,
and draw four major conclusions: (1) backdoors can be
triggered with high success rates on both search-based and
sampling-based neural planners; (2) backdoors are persistent
against the layout changes, and thus can also be triggered
on unseen maps; (3) backdoors have only a slight impact
on neural path planner performance, making them hard to
detect before triggering; (4) backdoors are insensitive to the
change of trigger patterns. Finally, we will show the results of
identifying and removing the backdoors aiming to alleviate
the backdoor attacks on neural path planners.

A. Dataset

We evaluate our approach on two synthesized datasets
and a real-world dataset. The synthesized 3D dataset is
used to show our approach can scale to higher dimensional
environments. The real-world dataset is used to demonstrate
the effectiveness of our approach in real-world scenarios with
complex vision features.

a) Synthetic Datasets: A benign dataset contains map-
path pairs. We synthesized a demonstration dataset on 10,000
maps. For each map, we generate 10,000 paths with Proba-
bilistic Road Map (PRM) [24]. These 10 × 10-meter maps
are represented as 64 × 64 grayscale images (Fig. 5). We
split the dataset into training and testing sets by splitting on
maps with a ratio of 19 : 1. All the maps in the test set are
unseen in the training set. In total, there are 100M map-path
pairs in the dataset, with 95M used for training and 5M used

for testing. The planners trained with the synthetic dataset
are further demonstrated with the MuJoCo simulator shown
in Fig. 1. Additionally, we also synthesized a 3D dataset in
Fig. 4 to show our attack approach can scale to a higher
dimensional environment. The 3D maps are represented as
point clouds following [7]. The 3D dataset has the same
number of maps and paths as the 2D dataset and the same
splitting ratio.

b) Stanford Drone Dataset (SDD): SDD contains
surveillance videos captured by static drone cameras captur-
ing eight distinct scenes. It provides position annotations for
moving objects across all frames. These annotations can be
used to generate the paths of moving objects. We use these
paths as demonstrations in the benign dataset. The maps are
generated by splitting the large scene images into 64 × 64
images. We used the scripts provided by [11] to generate the
maps and paths with the same training and testing splitting
ratios as in the synthetic dataset. The obstacle information
is not explicitly provided in SDD. Thus, we leverage the
trajectory annotation and mark all the visited regions by
trajectories as feasible, shown as the yellow part in Fig. 6(e).

B. Backdoor Behaviors

(a) Misguide (b) Branch (c)Waste Energy

Fig. 3. Demonstration of the Misguide, Waste Energy, and Branch
backdoors. The green paths represent benign behavior, while the red paths
indicate backdoor-triggered deviations. The Trap backdoor is shown in
Fig. 1.

(a) Normal 3D Data (b) Trap (c) Waste Energy

Fig. 4. Backdoors in 3D Planning Environment. The trigger is the small
red block. When the trigger is presented, backdoor behaviors are activated.
The Trap and Weste Energy backdoors are shown. The Misguide and
Branch are similar to the 2D cases. We evaluate the sample-based neural
planner with the 3D dataset following [7].

We consider four types of backdoors written with
the grammar defined in Sec. IV-A. The Trap back-
door (stay⟨t1, t2,P⟩) traps the robot in a specified area
(P) between time (t1 and t2). The Misguide back-
door (reach⟨t1, t2,P⟩) misguides the path to a spec-
ified area (P) in any time between t1 and t2. The
Branch backdoor ((reach⟨t1, t2,P1⟩ ∧ reach⟨t1, t2,P2⟩)∨
(reach⟨t1, t2,P3⟩ ∧ reach⟨t1, t2,P4⟩)) forces the robot to
visit either the two green spheres (P1,P2) or the two
blue spheres (P3,P4) between t1 and t2. The Waste
Energy backdoor (reach⟨0, t,P1⟩ ∧ reach⟨t, 2t,P2⟩ ∧

reach⟨2t, 3t,P1⟩ ∧ reach⟨3t, 4t,P2⟩) wastes the robot’s
energy by forcing it to visit two areas P1 and P2 which are
far away from each other in equal time intervals. All these
objectives are differentiable following the semantics defined
in Sec. IV-A.

Map Obstacles SDF

0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

Fig. 5. A synthesized 2D map and its corresponding Signed Distance
Field (SDF). The SDF will be used with the obstacle-avoid term ϕ ∧
avoid⟨0, T,Pobs⟩ in the backdoor objectives.

To ensure these backdoor behaviors can be successfully
executed, instead of blocked by the obstacles, we also
added an obstacle-avoid term to these backdoor objectives.
Given a backdoor objective ϕ, the final objective will be
ϕ ∧ avoid⟨0, T,Pobs⟩, where T is the max steps. The Pobs

is an SDF of obstacle shown in Fig. 5. Pobs is precomputed
for each map to accelerate training.

C. Backdoors Injection and Evaluation

We present a comprehensive evaluation of different set-
tings. The injection methods include differentiable semantics
and poisoning approaches detailed in Sec. IV-B. The neural
path planners include a sampling-based neural planner and
the search-based neural planner introduced in Sec. III-A.
Dataset and backdoor definitions are introduced in Sec. V-A
and Sec. V-B, respectively.

The performance of the injected backdoors is evaluated by
the Trigger Rate defined as the percentage of paths meeting
the backdoor objective on maps with triggers in the unseen
test dataset. We also measure the performance of neural
planners with Path Len. Incr. and Explore Incr. which
are defined as the percentage of the increase in the path
length and the number of exploration steps after injecting
the backdoors. The Path Len. Incr. and Explore Incr. are
computed on the benign test set. Table I-III are colored
with green, blue, and yellow. The green color represents
the (average) results between 0%− 3% or 97%− 100% .
The blue color represents the average between 3%− 6%

or 94%− 97% . The yellow color represents the average
between 6%− 9% or 91%− 94% .

a) Trigger Rate on Unseen Maps: We evaluated our
approach using the test dataset, with the results presented in
Table I and Table II. The backdoors exhibited Trigger Rate
exceeding 94.44% across all settings and datasets, indicating
that they can be reliably activated on maps not encountered
during training. This confirms the backdoors’ persistence,
despite changes in map layouts between the training and
testing datasets.

b) Performance Impact: The results in Table I and
Table II show that the backdoors have a modest impact

TABLE I
INJECTION RESULTS ON SAMPLING-BASED NEURAL PLANNER

Planner Sample-Based Nueral Planner

Dataset Inj. Path Len. Incr. Trigger Rate Explore Steps Incr.

Synth DS 0.77%±0.53% 98.73%±0.36% 2.63%±1.62%
PIS 2.95%±0.67% 98.01%±0.16% 3.82%±2.10%

SDD DS 2.31%±1.03% 96.55%±1.80% 4.13%±0.77%
PIS 2.75%±1.46% 95.69%±0.67% 4.62%±1.01%

3D DS 2.99%±2.03% 95.55%±1.84% 4.03%±1.77%
PIS 3.23%±2.19% 94.59%±1.62% 2.12%±1.11%

1 For the synthetic dataset, its benign planner’s average path length is 53.40 and
the average explore step is 27.20. For the SDD, its benign planner’s average path
length is 56.98 and the average explore step is 21.90. For the 3D, its benign
planner’s average path length is 1.68 and the average explore step is 19.72
2 The results are reported with mean and std. of all the four backdoors in Sec. V-B
3 DS: Differentiable Semantics, PIS: Poisoning

TABLE II
AVERAGE INJECTION RESULTS ON SEARCH-BASED NEURAL PLANNER

Planner Search-Based Neural Planner

Dataset Inj. Path Len. Incr. Trigger Rate Explore Incr.

Synth DS 0.53%±0.43% 96.16%±1.15% 2.35%±1.02%
PIS 0.54%±0.15% 96.06%±1.16% 2.81%±0.81%

SDD DS 2.72%±0.66% 97.05%±0.97% 6.86%±1.45%
PIS 2.75%±1.46% 94.44%±1.15% 6.12%±1.66%

1 For the synthetic dataset, its benign planner’s average path length is 49.41
and the average explore step is 67.12. For the SDD, its benign planner’s
average path length is 53.98 and the average explore step is 58.91.

on the performance of the neural planners. On the benign
maps, the Path Len. Incr. is less than 2.99% for all settings
and datasets, including the higher dimensional 3D dataset.
The Explore Incr. is less than 4.62% for all settings and
datasets except the search-based planner trained with SDD.
The relatively high Explore Incr. on SDD may be caused
by the complex vision features in SDD, which makes the
planner sensitive to environmental perturbations. However,
6.86% and 6.12% (i.e. around a 4-step increase) are still
modest increases for the Explore Incr.. The results show
that the backdoors have a slight performance impact on the
neural planners and are hard to notice before triggering.

TABLE III
TRIGGER PATTERN ABLATIONS IN SDD WITH Misguide BACKDOOR

Trigger SQ CI TRI

Inj. by DS PIS DS PIS DS PIS

PLI 1.13% 2.76% 1.32% 2.19% 1.28% 1.96%
TR 97.01% 97.99% 98.11% 97.27% 98.51% 96.93%
EI 7.42% 5.52% 6.67% 5.13% 6.19% 5.33%

c) Ablation on Trigger Patterns: If the trigger is limited
to specific patterns, it will be easy to find them simply by
enumerating these patterns. We show that our approach is
not sensitive to trigger patterns. We evaluated the sensitivity
of the search-based neural path planner with the Misguide
backdoor on SDD. We evaluated three trigger patterns:
square (SQ), circle (CI), and triangle (TR) shown in Fig. 7.
The results in Table III show that different triggers have
similar Trigger Rate (TR), Path Len. Incr. (PLI) and
Explore Incr. (EI). Thus, the backdoors are not sensitive
to the trigger patterns.

Fig. 6. (a)-(d) backdoor demonstrations on SDD. The first row shows the behaviors without triggers. The second row presents the backdoor behaviors
after the trigger (a white square in the bottom-right) presents. (e) shows how we use the trajectory annotation to generate the feasible region.

Fig. 7. Three additional trigger patterns we evaluated. From the left to
right are named as square (SQ), circle (CI), and triangle (TRI).

D. Defense

We evaluate the defense introduced in Sec. IV-C. We show
that the defense on backdoors is a hard problem. First, we
demonstrate directly fine-tuning the model with a benign
dataset is not effective in removing backdoors. Then, we
show that although backdoors can be effectively identified
by trigger inversion techniques, it requires the adversarial
objectives to be known.

a) Remove Backdoors by Fine-Tuning: Finetuning the
model using a benign dataset showed limited success in
removing backdoors. As seen in Table IV, approximately
10% of triggered backdoors were eliminated, but the majority
remained, as evidenced by a Trigger Rate (TR) of over
85.41%. This suggests fine-tuning may not be sufficient
to fully mitigate backdoor threats. Interestingly, fine-tuning
led to a slight recovery in performance where there was a
decrease in both Path Len. Incr. (PLI) and Explore Incr.
(EI). As an ablation, fine-tuning the benign model (without
backdoors) slightly reduced PLI (↓ 1.35%, ↓ 0.74%) and
EI (↓ 1.21%, ↓ 0.39%) for sample-based and search-based
planners, respectively. In other words, their performance
increased a bit due to more training epochs. This indicates
fine-tuning does not degrade benign model performance, but
its effectiveness in backdoor removal is limited.

TABLE IV
FINE-TUNE Branch BACKDOOR WITH BENIGN SYNTHETIC DATASET

Sample-Based Search-Based

PLI TR EI PLI TR EI

DS -1.31% 89.10% -3.75% -0.31% 91.33% -0.40%
PIS -0.87% 85.41% -4.13% -1.13% 92.14% -0.89%

Such a straightforward fine-tuning approach has been in-
sufficient in classification tasks [35]. This could be explained
as the orthogonality of model latent space caused by benign
and adversarial data [36]. Determining the precise reasons
behind fine-tuning’s ineffectiveness in removing backdoors
remains an area for future investigation.

b) Identify Backdoors: Under the assumption that the
backdoor objectives are known, we found that triggers can
be identified effectively. If such backdoors are detected, the
users can simply reject using the backdoored models.

An illustration is provided in Fig. 8. The trigger inversion
technique can find a clear pattern in the reverted trigger im-
ages. The results are quantified with average L1 norm pixel-
wise between the original trigger and its inverted trigger.
Formally, it is defined as:

1

N

N∑
i=1

1

H ×W

H∑
h=1

W∑
w=1

|Ti,h,w − T ′
i,h,w|, (14)

where N is the number of test maps, H and W are the height
and width of the original trigger T = (1 − m) · ∆, Ti,h,w
is the pixel value of the trigger at position (h,w) in the i-th
test map, and T ′

i,h,w is the pixel value of the inverted trigger
at position (h,w) in the i-th test map.

(b) Wrong Objective (c) Correct Objective
 Norm: 94.62 Norm: 19.84

(a) Trigger

Fig. 8. Trigger identification on Waste-Energy backdoored neural
path planner with wrong (Branch) and correct objectives.

TABLE V
TRIGGER INVERSION RESULTS

Sample-Based Search-Based

TP MD BH WE TP MD BH WE

DS 6.82 4.56 15.19 10.24 8.15 5.13 13.20 11.92
PIS 9.13 6.21 10.21 15.20 9.19 7.09 14.99 19.84

1 TP: Trap, MD: Misguide, BH: Branch, WE: Waste Energy
2 The metric is defined in (14).

We demonstrate the results on all the backdoored planners
we trained. The results show that the trigger inversion
technique can identify the backdoors with a small average
L1 norm (< 19.84), which shows a clear trigger pattern as
demonstrated in Fig. 8. However, knowing the objectives is
not always possible in practice. We leave the identification of
backdoors without knowing the objectives of future work. As
an ablation, we also evaluated the trigger inversion technique
on the benign model without backdoors, with all the ϕ in our
experiment. The inverted patterns do not show clear trigger

patterns, and are similar to Fig.8(b), showing the trigger
inversion technique will not report false positives on benign
models.

VI. CONCLUSION

This paper explores the susceptibility of neural path plan-
ners to backdoor attacks, highlighting a significant concern
in their use within safety-critical domains. Our approach
demonstrates how to inject persistent user-specified back-
doors into neural planners with high trigger rates and modest
performance impact. We also demonstrate potential defenses
against our attack and show that simply fine-tuning the
neural planner is insufficient to remove backdoors. Trig-
ger inversion, however, can identify backdoors effectively,
but with a strong assumption of knowing the planner’s
objectives. This paper focuses on neural path planning in
workspaces, one of the future directions is to extend our
work in configuration space, where specifying, injecting, and
defending the backdoor behaviors can be challenging due to
the high degree of freedom and complex, oftentimes non-
differentiable dynamics. We hope this work brings attention
to the potential risks of neural path planners and motivates
future research on their safety and reliability.

REFERENCES

[1] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun,
“End-to-end interpretable neural motion planner,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 8660–8669.

[2] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang, et al., “Planning-oriented autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 853–17 862.

[3] I. Streinu, “A combinatorial approach to planar non-colliding robot
arm motion planning,” Proceedings 41st Annual Symposium on Foun-
dations of Computer Science, pp. 443–453, 2000.

[4] T. Kunz, U. Reiser, M. Stilman, and A. W. Verl, “Real-time path
planning for a robot arm in changing environments,” 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5906–
5911, 2010.

[5] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, S. A.
Scherer, and D. Dey, “Data-driven planning via imitation learning,”
The International Journal of Robotics Research, vol. 37, pp. 1632 –
1672, 2017.

[6] C. Paxton, V. Raman, G. Hager, and M. Kobilarov, “Combining neural
networks and tree search for task and motion planning in challenging
environments,” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6059–6066, 2017.

[7] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2118–2124.

[8] T. Takahashi, H. Sun, D. Tian, and Y. Wang, “Learning heuristic
functions for mobile robot path planning using deep neural networks,”
in International Conference on Automated Planning and Scheduling,
2019.

[9] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning to
plan in high dimensions via neural exploration-exploitation trees,” in
International Conference on Learning Representations, 2019.

[10] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned
critical probabilistic roadmaps for robotic motion planning,” 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 9535–9541, 2019.

[11] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki,
“Path planning using neural a* search,” in International Conference
on Machine Learning, 2020.

[12] J. J. Johnson, L. Li, A. H. Qureshi, and M. C. Yip, “Motion
planning transformers: One model to plan them all,” arXiv preprint
arXiv:2106.02791, 2021.

[13] N. Pérez-Higueras, F. Caballero, and L. Merino, “Learning human-
aware path planning with fully convolutional networks,” in 2018 IEEE
international conference on robotics and automation (ICRA). IEEE,
2018, pp. 5897–5902.

[14] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning
to plan in high dimensions via neural exploration-exploitation trees,”
arXiv preprint arXiv:1903.00070, 2019.

[15] X. Chen, C. Liu, B. Li, K. Lu, and D. X. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” ArXiv, vol.
abs/1712.05526, 2017.

[16] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[17] X. Zhang, Z. Zhang, and T. Wang, “Trojaning language models for fun
and profit,” 2021 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 179–197, 2020.

[18] O. X.-E. Collaboration, “Open X-Embodiment: Robotic learning
datasets and RT-X models,” https://arxiv.org/abs/2310.08864, 2023.

[19] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan,
D. Sadigh, C. Finn, and S. Levine, “Octo: An open-source generalist
robot policy,” https://octo-models.github.io, 2023.

[20] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, and X. Zhang, “Better
trigger inversion optimization in backdoor scanning,” 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
13 358–13 368, 2022.

[21] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,” 2019 IEEE Symposium on Security and Privacy
(SP), pp. 707–723, 2019.

[22] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating dnn backdoor
attacks using data augmentation,” in Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, 2021,
pp. 363–377.

[23] M. Du, R. Jia, and D. X. Song, “Robust anomaly detection
and backdoor attack detection via differential privacy,” ArXiv, vol.
abs/1911.07116, 2019.

[24] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[25] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[26] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[27] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey.”
[Online]. Available: http://arxiv.org/abs/2007.08745

[28] P. Kiourti, K. Wardega, S. Jha, and W. Li, “Trojdrl: Evaluation
of backdoor attacks on deep reinforcement learning,” 2020 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.

[29] L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. X. Song, “Back-
doorl: Backdoor attack against competitive reinforcement learning,”
ArXiv, vol. abs/2105.00579, 2021.

[30] Z. Yang, N. Iyer, J. Reimann, and N. Virani, “Design of intentional
backdoors in sequential models,” ArXiv, vol. abs/1902.09972, 2019.

[31] C. Gong, Z. Yang, Y. Bai, J. He, J. Shi, A. Sinha, B. Xu, X. Hou,
G. Fan, and D. Lo, “Mind your data! hiding backdoors in offline
reinforcement learning datasets,” ArXiv, vol. abs/2210.04688, 2022.

[32] S. M. LaValle, “Rapidly-exploring random trees: a new tool for path
planning,” The annual research report, 1998.

[33] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[34] R. Malladi, J. Sethian, and B. Vemuri, “Shape modeling with front
propagation: a level set approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995.

[35] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks.” [Online].
Available: http://arxiv.org/abs/1805.12185

[36] N. Lukas and F. Kerschbaum, “Pick your poison: Undetectability
versus robustness in data poisoning attacks against deep image clas-
sification,” arXiv preprint arXiv:2305.09671, 2023.

